53 research outputs found

    Analytic model for a frictional shallow-water undular bore

    Get PDF
    We use the integrable Kaup-Boussinesq shallow water system, modified by a small viscous term, to model the formation of an undular bore with a steady profile. The description is made in terms of the corresponding integrable Whitham system, also appropriately modified by friction. This is derived in Riemann variables using a modified finite-gap integration technique for the AKNS scheme. The Whitham system is then reduced to a simple first-order differential equation which is integrated numerically to obtain an asymptotic profile of the undular bore, with the local oscillatory structure described by the periodic solution of the unperturbed Kaup-Boussinesq system. This solution of the Whitham equations is shown to be consistent with certain jump conditions following directly from conservation laws for the original system. A comparison is made with the recently studied dissipationless case for the same system, where the undular bore is unsteady.Comment: 24 page

    Unsteady undular bores in fully nonlinear shallow-water theory

    Get PDF
    We consider unsteady undular bores for a pair of coupled equations of Boussinesq-type which contain the familiar fully nonlinear dissipationless shallow-water dynamics and the leading-order fully nonlinear dispersive terms. This system contains one horizontal space dimension and time and can be systematically derived from the full Euler equations for irrotational flows with a free surface using a standard long-wave asymptotic expansion. In this context the system was first derived by Su and Gardner. It coincides with the one-dimensional flat-bottom reduction of the Green-Naghdi system and, additionally, has recently found a number of fluid dynamics applications other than the present context of shallow-water gravity waves. We then use the Whitham modulation theory for a one-phase periodic travelling wave to obtain an asymptotic analytical description of an undular bore in the Su-Gardner system for a full range of "depth" ratios across the bore. The positions of the leading and trailing edges of the undular bore and the amplitude of the leading solitary wave of the bore are found as functions of this "depth ratio". The formation of a partial undular bore with a rapidly-varying finite-amplitude trailing wave front is predicted for ``depth ratios'' across the bore exceeding 1.43. The analytical results from the modulation theory are shown to be in excellent agreement with full numerical solutions for the development of an undular bore in the Su-Gardner system.Comment: Revised version accepted for publication in Phys. Fluids, 51 pages, 9 figure

    Hard loss of stability in Painlev\'e-2 equation

    Full text link
    A special asymptotic solution of the Painlev\'e-2 equation with small parameter is studied. This solution has a critical point tt_* corresponding to a bifurcation phenomenon. When t<tt<t_* the constructed solution varies slowly and when t>tt>t_* the solution oscillates very fast. We investigate the transitional layer in detail and obtain a smooth asymptotic solution, using a sequence of scaling and matching procedures

    Resolution of a shock in hyperbolic systems modified by weak dispersion

    Get PDF
    We present a way to deal with dispersion-dominated ``shock-type'' transition in the absence of completely integrable structure for the systems that one may characterize as strictly hyperbolic regularized by a small amount of dispersion. The analysis is performed by assuming that, the dispersive shock transition between two different constant states can be modelled by an expansion fan solution of the associated modulation (Whitham) system for the short-wavelength nonlinear oscillations in the transition region (the so-called Gurevich -- Pitaevskii problem). We consider as single-wave so bi-directional systems. The main mathematical assumption is that of hyperbolicity of the Whitham system for the solutions of our interest. By using general properties of the Whitham averaging for a certain class of nonlinear dispersive systems and specific features of the Cauchy data prescription on characteristics we derive a set of transition conditions for the dispersive shock, actually bypassing full integration of the modulation equations. Along with model KdV and mKdV examples, we consider a non-integrable system describing fully nonlinear ion-acoustic waves in collisionless plasma. In all cases our transition conditions are in complete agreement with previous analytical and numerical results.Comment: 56 pages, 5 figures. Misprints corrected. References adde

    Biomedical informatics and translational medicine

    Get PDF
    Biomedical informatics involves a core set of methodologies that can provide a foundation for crossing the "translational barriers" associated with translational medicine. To this end, the fundamental aspects of biomedical informatics (e.g., bioinformatics, imaging informatics, clinical informatics, and public health informatics) may be essential in helping improve the ability to bring basic research findings to the bedside, evaluate the efficacy of interventions across communities, and enable the assessment of the eventual impact of translational medicine innovations on health policies. Here, a brief description is provided for a selection of key biomedical informatics topics (Decision Support, Natural Language Processing, Standards, Information Retrieval, and Electronic Health Records) and their relevance to translational medicine. Based on contributions and advancements in each of these topic areas, the article proposes that biomedical informatics practitioners ("biomedical informaticians") can be essential members of translational medicine teams

    A perturbation method for nonlinear dispersive wave problems

    No full text
    corecore